Lecture 6 - January 23

Asymptotic Analysis of Algorithms

Big-O: Pred. Def., Properties, Examples Correct vs. Accurate Asymptotic U.B. Deriving U.B. from Code: Basic Examples

Announcements/Reminders

- Assignment 1 due next Monday
- splitArrayHarder: an extended version released
- Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
- Contact Information of TAs on common eClass site

Asymptotic Upper Bound (Big-O): Alternative Formulation

Big-O Properties (1): Members in a Family

Each member f(n) in O(g(n)) is such that: Higest Power of f(n) <= Highest Power of g(n)

Big-O Properties (3): Deciding Correct & Accurate Bound

O(7n²+4n-2)X^{not} appropriate cs the final answer

Asymptotic Upper Bounds: Example (1)

Given $f(n) = (5n^2 + (3n \cdot \log n + (2n + (5) + (5))))$

(1) What is f(n)'s most accurate asymptotic upper bound.
(2) Prove your claim.

Asymptotic Upper Bounds: Example (2) (Exercise)

Given $f(n) = 20n^3 + 10n \cdot \log n + 5$:

(1) What is f(n)'s <u>most accurate</u> asymptotic upper bound.
(2) <u>Prove</u> your claim.

Asymptotic Upper Bounds: Example (3)

Given $f(n) = 3 \cdot \log n + 2$:

(1) What is f(n)'s most accurate asymptotic upper bound.

(2) Prove your claim.

Asymptotic Upper Bounds: Example (4) (Exercise)

Given f(n) = 2ⁿ⁺²:
(1) What is f(n)'s most accurate asymptotic upper bound.
(2) Prove your claim.

Asymptotic Upper Bounds: Example (5) (Exercise)

Given $f(n) = 2n + 100 \cdot \log n$:

(1) What is f(n)'s most accurate asymptotic upper bound.

(2) **Prove** your claim.